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Existing explanations of obesity-associated cancer emphasise direct mutagenic effects of dietary components or
hormonal imbalance. Some of these hypotheses are reviewed briefly, but recent evidence suggests a major role
for chronic inflammation in cancer risk, possibly involving dietary content. These ideas include the inflamma-
tion-induced activation of the kynurenine pathway and its role in feeding and metabolism by activation of the
aryl hydrocarbon receptor (AHR) and by modulating synaptic transmission in the brain. Evidence for a role of
the kynurenine pathway in carcinogenesis then provides a potentially major link between obesity and cancer.
A second new hypothesis is based on evidence that serine proteases can deplete cells of the tumour suppressors
Deleted in Colorectal Cancer (DCC) and neogenin. These enzymes include mammalian chymotryptic proteases
released by pro-inflammatory neutrophils and macrophages. Blood levels of chymotrypsin itself increase in par-
allel with food intake. The mechanistically similar bacterial enzyme subtilisin is widespread in the environment,
animal probiotics, meat processing and cleaning products. Simple public health schemes in these areas, with se-
lective serine protease inhibitors and AHR antagonists and could prevent a range of intestinal and other cancers.
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1. Introduction

The current impact of obesity on public health is a headline concern
worldwide, especially since obesity is a significant risk factor for several
types of cancer. Obesity is characterized by an excess of body fat consid-
ered to be harmful to health and defined by theWorld Health Organisa-
tion as a body mass index (BMI; body weight [kg]/height [m2])
N30 kg/m2 (WHO, 2016) (class 1, 30–35, class 35–40, class 3 N 40)
with normal values considered as 18.5–24.9 kg/m2 and overweight as
intermediate values of 25–29.9 kg/m2. The term ‘lean’ is occasionally
used to refer to weights below 18.5 kg/m2. By these criteria around
two-thirds of adults aged over 20 years in the USA are currently over-
weight with a prevalence of obesity of approximately 35% (Ogden et
al., 2012), predicted to reach 42% by 2030 in people over 18 years
(Finkelstein et al., 2012).

The main driver for obesity is believed to be an overall rise in caloric
intake (Swinburn et al., 2009) with a shift towards snacking patterns of
eating and increased consumption of high carbohydrate beverages and
dietary fat. Low levels of physical activity increase the problem
(Cameron et al., 2003) with a significant but poorly understood role of
genetic factors (Thorleifsson et al., 2009). Significant consequences of
obesity include themedical, economic and social burdens of obesity-re-
lated comorbidities such as coronary heart disease, type-2 diabetes
mellitus, respiratory disease and cancer (Renehan et al., 2008). Many
of the global concerns around the links between environmental factors
and diet, nutrition, obesity and cancer are addressed by theWorld Can-
cer Research Fund (WCRF) and their various publications (http://www.
wcrf.org/int/policy/our-publications).
2. Obesity and Cancer

Tumor development involves a local microenvironment which pro-
motes cell proliferation, partly through release of mitogenic signals,
and induces cell survival mechanisms as well as the induction of toler-
ance in cytotoxic host T cells (Hanahan and Weinberg, 2011;
Prendergast et al., 2010). Parkin and Boyd (2011) estimated that 5.5%
of cancer cases in the UK were related to overweight and obesity
while others have claimed that the relative risk ofmortality from cancer,
attributable to obesity, was approximately 14.2% in men and 19.8% in
women (Calle et al., 2003).

The association between obesity and cancer is quite secure in human
populations (Arslan et al., 2009; Pischon et al., 2008; Xu et al., 2003) es-
pecially with respect to tumors of the gastrointestinal (GI) tract (Zeng
and Lazarova, 2012; Zeng et al., 2014) where being overweight carries
a 1.5–2.4-fold increase in cancer risk (Moore et al., 2005). The link has
also been supported by animal experiments inwhich obesity and cancer
have been modified by dietary means (Nogueira et al., 2012a, 2012b).
Several studies have attempted to define the types of cancermost highly
associatedwith obesity, which include breast cancer in postmenopausal
women, colon cancer (especially inmen), endometrial, esophageal ade-
nocarcinoma, gall bladder and renal cancers (Bhaskaran et al., 2014;
Price et al., 2012; Renehan et al., 2008).
Awareness of the role of lifestyle factors in the relationship between
obesity and cancer is gaining prominence and will be addressed in a
later section. For example, high red and processed meat consumption
has been identified as a risk factor for colorectal cancer (Alexander et
al., 2011; Huxley et al., 2009; Magalhaes et al., 2012; Norat et al.,
2005) and with an increased risk of obesity (Wang and Beydoun,
2009). A role for adipose tissue is also relevant in the case of breast can-
cer, where a strong association exists between the amount ofmammary
adipose tissue and collagen (broadly equating with overall breast size),
breast cell density and lifetime risk for mammary cancer (Boyd et al.,
2007; DeFilippis et al., 2012). This may be related to the inverse expres-
sion of CD36, a commonmembrane proteinwhichplays a role in cell de-
velopment and intercellular interactions. Lower levels of CD36 in breast
tissue lead to an increase in collagen deposition at the expense of adi-
pose tissue, which declines in quantity. The increased collagen to adi-
pose ratio, as seen normally with aging, results in breasts of higher
tissue density and increased cancer risk (Boyd et al., 2007; DeFilippis
et al., 2012). Further factors influencing breast cancer development via
obesity and breast adiposity have included the possible influence of es-
trogens produced in adipose tissue. These steroids can promote carcino-
genesis and add to the lifetime total of estrogen stimulation from oral
contraceptives, hormone replacement therapy, and pregnancies
(Gerard and Brown, 2017).
2.1. Insulin Resistance

Adipose tissue is an important site of insulin activity, promoting tri-
glyceride storage and inhibiting lipolysis (Choi et al., 2010). There is a
strong positive relationship between fasting insulin levels and post-
menopausal cancer risk, specifically in non-users of hormone therapy
(Gunter et al., 2009) consistent with the view that postmenopausal
breast cancer is analogous to obesity-associated cancer resulting from
insulin resistance (Bhaskaran et al., 2014; Renehan et al., 2008). Insulin
resistance is a feature of obese individuals, accompanied by a high circu-
lating insulin level which is a well-established risk factor for cancer
(Kim et al., 2004; Goodwin et al., 2002; Hsing et al., 2001) and which
is associated with marked changes in the levels of inflammatory
markers (Lee and Lee, 2014).

In a sample of 208 healthy non-obese volunteers, insulin sensitivity
was correlated with cancer development over a 6-year period (Facchini
et al., 2001). The insulin resistance associated with obesity may be
symptomatic of a more profound dysfunction of the insulin/insulin-
like growth factor-1 (IGF-1) axis (Kim et al., 2004; Cohen and LeRoith,
2012). Obesity-related insulin resistance and hyperinsulinemia are as-
sociatedwith elevated blood levels of unbound, but not total, IGF-1 pro-
tein (Frystyk et al., 1995; Nam et al., 1997) with activation of the insulin
and IGF-1 receptors (IGF-1R) triggering transduction pathways which
promote tumor growth (Kulik et al., 1997; Parrizas et al., 1997). Obe-
sity-associated insulin resistance gives rise to increased free IGF-1 levels
in the postprandial statewhereas a reduction of free IGF-1 is observed in
lean insulin-sensitive subjects (Ricart and Fernández-Real, 2001). High
levels of insulin could dysregulate IGF-1 signalling by their ability to

http://www.wcrf.org/int/policy/our-publications
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reduce expression of the hepatic IGF Binding Proteins (IGFBP) (Nam et
al., 1997) resulting in increased levels of free IGF. Whether the chronic
pattern of postprandial IGF-1 levels is an important factor in the rele-
vance of this protein to obesity remains unresolved, but it could clearly
contribute to the obesogenic (and diabetogenic) propensity of modern
‘snacking’ behavior with the frequent consumption of small quantities
of foodstuffs, especially those solid and liquid varieties providing high
doses of carbohydrate.

Colorectal cancer risk has been associated with increased levels of
circulating IGF-1 in men (Ma et al., 1999) although Wolpin et al.
(2009) found no link between IGF-1 and colorectal-cancer specificmor-
tality. In addition, a case-control study discovered no association be-
tween IGF-1 and premenopausal or postmenopausal breast cancer
(Petridou et al., 2000). However, the relative amounts of bound and
free IGF present were not clear.

Up-regulation of the insulin and IGF-1Rs has been indicated in can-
cer (Hellawell et al., 2002; Papa et al., 1990). Both receptors interact
with the intracellular insulin receptor substrate 1, which subsequently
promotes the phosphoinositide 3-kinase (PI3 kinase)/protein kinase B
(Akt) cascade (Myers et al., 1994). This pathwayultimately inhibits pro-
grammed cell death (Datta et al., 1997; Kulik et al., 1997). Upon insulin
and IGF-1R activation, the intracellular protein Ras stimulates the mito-
gen-activated protein kinase (MAPK) pathway, which also plays a vital
Fig. 1. A schematic illustrating some of the factors proposed to affect obesity and carcinogen
“Mechanism” and including insulin resistance. These factors often act via specific “Receptors”
migration and death. The kynurenine pathway is activated by inflammation and acts via th
relevant to BMI regulation as well as regulating feedback on inflammation. Kynurenines can a
G-protein coupled receptor GPR35. Fatty acid metabolism can affect inflammatory cytokine pr
role in cell proliferation and inhibition of apoptosis (Parrizas et al., 1997;
Menu et al., 2004) (Fig. 1).
2.2. Glucagon

Glucagon, the peptide hormone from pancreaticα-cells opposes the
actions of insulin bymobilising glucose and inhibiting its utilisation. An-
alogues of the natural glucagon-mimetic Glucagon-Like Peptide-1 (GLP-
1) reduce body mass and help to prevent type-2 diabetes mellitus and
cancer development, partly by inhibiting glycogen synthase kinase-3
(GSK-3). This has led to the introduction of non-peptide compounds
such as liraglutide into clinical use (Tomlinson et al., 2016). GLP-1 ago-
nists are also likely to act by suppressing the invasion of pro-inflamma-
tory macrophages into adipose tissue (Lee et al., 2012).

The potential links between obesity and carcinogenesis are exempli-
fied by the finding that GLP-1R agonists can inhibit cancer development
as well as type-2 diabetes mellitus. Cancer is one of the main causes of
death in patients with type-2 diabetes (Nomiyama and Yanase, 2016;
Yorifuji et al., 2016). GLP-1 agonists can promote cell apoptosis in some
tumors and cell lines, thus exhibiting anti-cancer activity, in some cases
by inhibiting glycogen synthase kinase-3 (GSK-3) (Koehler et al.,
2011). This activity may stem from the ability of GLP-1 agonists to
esis. Obesity is associated with hormonal and inflammatory changes summarised under
which regulate key “Pathways” responsible for the control of cell viability, proliferation,
e Aryl Hydrocarbon Receptor (AHR) to modulate transcription factors and microRNAs
ffect feeding directly via glutamate receptors (NMDAr) in the brain and possibly via the
oduction and T cell balance in the immune system.
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suppress invasion of adipose tissue by pro-inflammatory macrophages
(Lee et al., 2012).

2.3. Leptin

The ability of adipose tissue to generate a factor or factors that in-
crease cell susceptibility to cancer initiation or progression had been
supported by a variety of studies on different forms of cancer. Leptin is
an adipocyte specific hormone, a product of the ob gene involved in reg-
ulating food intake and body weight via its actions on the central ner-
vous system (CNS) and adipocytes to suppress appetite and promote
metabolism (Halaas et al., 1995). In obese individuals, this hormone is
present at higher levels than in their leaner counterparts, positively cor-
relating with an increased proportion of body fat and often associated
with leptin resistance.

Epidemiological evidence indicates that high leptin levels are associ-
ated with an increased risk of colon cancer (Stattin et al., 2004) and
breast cancer (Han et al., 2005; Wu et al., 2009). In agreement with the
finding that postmenopausal breast cancer is strongly associated with
obesity (Renehan et al., 2008), postmenopausal womenwith the highest
waist circumference and leptin concentration are recognized to have the
greatest risk of breast cancer (Wu et al., 2009). However, menopausal
status has also been deemed irrelevant to hyperleptinemia-associated
breast cancer in one study since there was no correlation between
them (Han et al., 2005). Furthermore, Mantzoros et al. (1999) disagreed
with the notion that leptin is involved in the etiology of breast cancer, al-
though this studywas only conducted on premenopausal women. An in-
creased leptin receptor expression has been identified in several types of
cancer (Attoub et al., 2000; Kim, 2009).

Leptin is a stimulator of cell proliferation and tumor growth (Chen et
al., 2013; Gonzalez et al., 2006, 2009; Hardwick et al., 2001; Takahashi et
al., 1997) probably attributable to MAPK phosphorylation and there is
an increased expression of leptin receptors in several types of cancer
(Dieudonne et al., 2002; Hardwick et al., 2001). Leptin is a promotor
of cyclin D1 (Gonzalez et al., 2006), an important contributor to cell
cycle progression, and suppresses apoptosis in ovarian cancer cells
(Chen et al., 2013). The activation by leptin of PI3K and MAPK also pro-
motes angiogenesis, contributing to tumor growth (Gonzalez et al.,
2006). Additional carcinogenic actions of leptin include increasing aro-
matase expression leading to enhanced pro-estrogenic pathways, estra-
diol production and estrogen receptor-α signalling (Catalano et al.,
2003, 2004), all of which are of particular significance in estrogen-re-
sponsive cancers. Postmenopausal breast cancer is strongly associated
with obesity (Renehan et al., 2008). Postmenopausal women with
high waist circumference and leptin concentration have the greatest
risk of breast cancer (Wu et al., 2009). High leptin levels are also associ-
ated with an increased risk of colon cancer.

2.4. Adipokines

In addition to leptin several other adipose-derived factors -
adipokines - have subsequently been recognized including adiponectin,
tumor necrosis factor- α (TNF-α) and interleukin-6 (IL-6) (Fain et al.,
2004). The expansion of adipose tissue in obesity leads to a rise in the
plasma levels of these factors with a reduction in adiponectin produc-
tion (Arita et al., 1999; Hotamisligil et al., 1995; Vendrell et al., 2004).
The incidence of several cancers is increased with elevated circulating
leptin and IL-6 levels. (Stattin et al., 2004; Wu et al., 2009) and the
risk of colorectal adenomas, which have the potential to develop into
carcinomas, have been associated with an increased secretion of TNF-
α and IL-6 (Kim et al., 2008).

2.4.1. Adiponectin
Adiponectin is a peptide hormone which has a physiological role in

glucose metabolism, enhancing insulin sensitivity and glucose uptake
(Berg et al., 2001) as well as stimulating fatty acid oxidation
(Yamauchi et al., 2002). In contrast to other adipokines, adiponectin
concentrations are significantly lower in obese individuals compared
to those in a normal BMI range (Arita et al., 1999). There is a negative
association between circulating adiponectin levels with cancer risk
and disease severity (Dal Maso et al., 2004; Goktas et al., 2005; Malvi
et al., 2015; Miyoshi et al., 2003; Wei et al., 2005). The reduction in
adiponectin secretion seen in obese individuals may contribute to insu-
lin resistance (Yamauchi et al., 2001).

Adiponectin acts on two receptors. AdipoR1might play a significant
role in mediating adiponectin's anti-cancer effects (Nakayama et al.,
2008; Pfeiler et al., 2010) although both are expressed in greater quan-
tities in invasive compared with non-invasive breast cancer (Pfeiler et
al., 2010). The investigators suggested that low adiponectin levels
could induce a feedback loop causing an up-regulation of AdipoR1 ex-
pression. In contrast, AdipoR1 levels are lower in several prostate cancer
cell lines compared with healthy prostate tissue (Gao et al., 2015). Sim-
ilarly, primary tumor progression and differentiation of colorectal can-
cer cells were associated with a reduced expression of AdipoR1 and
AdipoR2 (Byeon et al., 2010). Interestingly, Gialamas et al. (2011)
found opposing results, demonstrating that AdipoR2 expression was
enhanced in advanced tumors and metastatic colorectal cancer cells,
with no relationship to AdipoR1 expression. Any mechanistic relation-
ship is therefore complex or influenced by factors not yet identified or
understood.

In support of the concept that adiponectin has anti-cancer activity, it
has been reported that the hormone has anti-angiogenic properties in
vitro (Brakenhielm et al., 2004). Adiponectin inhibits Vascular Endothe-
lial Growth Factor-A (VEGF-A) modulated cancer neo-vascularisation in
prostate cancer cells via AdipoR1 and AMPK activation (Gao et al., 2015),
strengthening the hypothesis that adiponectin inhibits cancer growth by
suppressing angiogenesis (Fig. 1). Sugiyama et al. (2009) discovered that
adiponectin inhibits colorectal cancer cell growth in vitro, probably by
down-regulating the mechanistic target of rapamycin (mTOR) via
AMPK phosphorylation. The dual action of the AMPK up-regulation and
Akt inhibition has been considered an important feature of adiponectin's
anti-proliferative and pro-apoptotic receptor-mediated effects in malig-
nant cells (Medina et al., 2014). Correlating with these results,
adiponectin inhibits the proliferation of breast cancer cells by hindering
cell cycle progression, although there is some controversy surrounding
the hormone's ability to induce apoptosis (Nakayama et al., 2008).

Adiponectin may also prevent cancer growth by increasing insulin
sensitivity (Berg et al., 2001; Yamauchi et al., 2002) as discussed
above. Induction of insulin sensitivity would reduce the circulating
levels of insulin and IGF-1 which, at high levels of the free form, is be-
lieved to be carcinogenic (Goodwin et al., 2002).

2.4.2. Ceruloplasmin
One of the most recently identified adipokines is ceruloplasmin

which is highly concentrated in adipose tissue from obese individuals
and is synthesized and released at higher rates than in control subjects
(Arner et al., 2014). It was estimated that adipose tissue secretion
accounted for almost one quarter of the circulating level of the protein.
As ceruloplasmin is involved in angiogenesis, its increase presence in
obese subjects may facilitate or promote the development of several
cancers.

2.5. Fatty Acid Metabolism

Fatty Acid Synthase (FAS) is responsible for catalysing de novo synthe-
sis of long-chain fatty acids which are crucial for cellular energy metabo-
lism and membrane function (Wakil, 1989). There is a relationship
between increased FAS expression andpoor patient prognosis in prostate,
colon, breast, gastrointestinal and ovarian tumors (Gansler et al., 1997;
Keshk et al., 2014; Rossi et al., 2006). Conversely, inhibiting FAS has
proven efficacy in cancer therapy (Kridel et al., 2004; Seguin et al., 2012).
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Nguyen et al. (2010) identified a FAS polymorphism which was
common inmaleswith higher BMI ranges (BMI ≥ 25 kg/m2) andwas as-
sociated with a greater prostate cancer risk and mortality. Importantly,
this correlation was only observed in overweight and obese men, with
no association among men of normal weight who possessed this poly-
morphism. In line with this, tumoral FAS overexpression in obese pa-
tients was associated with worse colon cancer mortality rates, in
contrastwith tumoral FAS overexpression being a sign of improved sur-
vival in non-obese patients (Ogino et al., 2008). It was speculated that
energy balance might alter the oncogenic influence of FAS upregulation
in colon cancer cells, as a hyper-energy state (reflected as the level of
adiposity) could augment tumor growth. In contrast, one study con-
cluded that FAS-negative colorectal cancer risk was greater in female
patients with a higher BMI, indicating no correlation between BMI and
FAS-positive colorectal cancer risk (Kuchiba et al., 2012).

Fatty acids and related microbial products have also been linked
with both obesity and cancer (Stone and Darlington, 2017). The com-
pound receiving most attention is deoxycholic acid (DCA), which has
been reviewed in previous reports (Balaban et al., 2017; Hara, 2015;
Yoshimoto et al., 2013). As noted above, the ability of fatty acids to acti-
vate cytokine secretion from macrophages provides a mechanistic link
between obesity and inflammation which may be crucial. However,
sincemacrophage and neutrophil activation also enhances the secretion
of serine proteases such as chymase, chymotrypsin and cathepsin G, the
hypothesis proposed in the following section may also be highly
relevant.

2.6. Chronic Inflammation

Chronic inflammation is associated with several non-infective phys-
iological conditions, including obesity (Calle and Kaaks, 2004; Musso et
al., 2010; Cottam et al., 2010; George et al., 2017). Local and systemic
chronic inflammation have been recognized as states favoring tumor
initiation and progression, largely through the generation of pro-in-
flammatory cytokines, such as TNF-α and IL-6 (Grivennikov et al.,
2009; Morris et al., 2013; Howe et al., 2013). Correlations have been
made between local chronic inflammatory conditions, such as inflam-
matory bowel disease, and an increased risk of developing cancers
(Bernstein et al., 2001) while systemic inflammation has been corre-
lated with an increased prevalence of colorectal adenomas. In addition,
the presence of obesity was correlated with increased levels of IL-6,
TNF-α and the inflammatory biomarker C-reactive protein (CRP)
(Yudkin et al., 1999; Kim et al., 2008). Both TNF-α and IL-6 are produced
by adipose cells (Hotamisligil et al., 1995;Mohamed-Ali et al., 1997) and
by macrophages, which typically accumulate in tissues with increased
adiposity (Sopasakis et al., 2005; Weisberg et al., 2003). These pro-in-
flammatory cytokines may then explain the tumor resistance which
can be induced by activated macrophages in white adipose tissue (Xu
et al., 2003). Adipose tissue contains high concentrations of pro-inflam-
matory CD4+ Th1 and CD8+ cells together with B cells and dendritic
cells (DCs) but in addition has high levels of anti-inflammatory Th2
and Treg cells. The net balance is increasingly shifted towards a pro-in-
flammatory state in tissue from obese individuals (Lee et al., 2014), pro-
moting an oncogenic environment.

There is an apparent paradox here since, despite the recognition that
obesity is accompanied by a chronic low-grade state of inflammation,
the evidence for a relationship between systemic inflammatory media-
tors and the occurrence of cancer is less than compelling. Some general
links have been identified, especially in colorectal cancer (Ghuman et
al., 2017). It is likely, however, that a resolution of this question will
be found in a more specific characterisation and categorisation of the
mediators and tumors. Thus, associations have been demonstrated be-
tweenmediators and the type, location, stability and rate of progression
of some cancers (Il'yasova et al., 2005). C Reactive Protein (CRP), TNFa
and IL-6 were all correlated with aspects of lung cancer, while CRP
and IL6 were correlated with the presence of colorectal cancer and
only CRP showed any relationship to breast cancer, with none of these
markers having any association with prostate cancer (Il'yasova et al.,
2005). As the range of useful markers of inflammation is expanded,
more specific relationships are likely to be revealed with different as-
pects and properties of cancers (Rasmussen et al., 2017). Concentrations
of inflammatorymarkers are, of course, increased in a range of non-can-
cerous conditions which may dilute any association with cancer.

There are several areas of overlap between the inflammatory hy-
pothesis and those presented above. A recent examination of visceral
adipose tissue (Frasca et al., 2017) has revealed high densities of pro-in-
flammatory B cells in that tissue, expressing elevated levels of inflam-
matory markers higher than in splenic B cells. Adipocyte-conditioned
medium promoted the increased formation of the inflammatory cells,
which also secreted increased amounts of adipogenic factors and
chemoattractant chemokines. Together these results imply a substantial
pro-inflammatory environment associated with visceral adipocytes
which would favor carcinogenesis in an obese host.

Adipose tissue is not merely a resting, storage tissue for excess carbo-
hydrates but it secretes a range of compounds with profound effects on
metabolic regulation. Obesity is associated with hyperplasia of the adipo-
cytes which generate abnormally high quantities of free fatty acids. The
latter are potent activators of macrophages which generate pro-inflam-
matory cytokines including IL-1β, IL-6 and TNF-α (Howe et al., 2013;
Iyengar et al., 2015; Morris et al., 2013). This leads to activation of NFkB
via Akt and ultimately to the activation of aromatase and increased syn-
thesis of estrogen, both of which promote estrogen-dependent breast
cancer.

Othermolecules able to activate inflammatory T cells are continually
being identified. The co-activator molecule OX40, for example, en-
hances the expression of pro-inflammatory genes and exists at high
levels on CD4+ T cells located within adipose tissue (Liu et al., 2017).
The degree of expression on human T cells was correlated with body
weight, whereas induced deficiency of OX40 led toweight loss in exper-
imental mice. OX40may therefore represent a novel inflammatory reg-
ulator relevant to obesity and linking this disorder with inflammation-
induced carcinogenesis.

2.6.1. TNF-α
TNF-α expression is up-regulated in parallel with an increase in BMI

(Hotamisligil et al., 1995; Kim et al., 2008) although Kern et al. (1995)
reported that this relationship did not exist for people in the morbidly
obese range. There is also a correlation between circulating TNF-α levels
and the prevalence of colorectal adenomata (Kim et al., 2008). The ac-
tion of TNF-α is thought to be limited to the local adipose tissue micro-
environment, where it may function in an autocrine and paracrine
fashion since it is not released systemically into the vascular system
(Mohamed-Ali et al., 1997). This may explain why local changes in
TNF-α levels do not necessarily correspond to variations in systemic
TNF-α concentrations (Hotamisligil et al., 1995).

Functionally, TNF-α regulates other adipokines and can induce cell
survival., promoting oncogenesis. In vitro studies have demonstrated a re-
duction of adiponectin mRNA levels within adipose tissue in response to
TNF-α, an action that would promote tumor progression (Bruun et al.,
2003). On the other hand, although it is widely recognized that TNF-α
plays a vital role in inducing tumor necrosis, it is now understood to
have anti-apoptotic potential in some tumors, at least partly through
the stimulation of nuclear factor-κB (NFκB) (Rubio et al., 2006). The pre-
cise role of TNF-α may, therefore, as with other molecules implicated in
cancer, be dependent on cell type, cancer stage, local microenvironment
and many other factors.

2.6.2. IL-6
The plasma levels of IL-6 in the systemic circulation of morbidly

obese patients - a population at risk for cancer related mortality - are
significantly greater than control healthy volunteer subjects
(Mohamed-Ali et al., 1997; Vendrell et al., 2004; Calle et al., 2003).
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Higher levels of IL-6 occur in the blood of patients with ovarian and he-
patocellular carcinoma, compared with healthy controls (Porta et al.,
2008).

The carcinogenic properties of IL-6 seem to be related to its action
via the Janus kinase-2 (JAK2)/Signal transducer and activator of tran-
scription-3 (STAT3) signalling pathway (Fig. 1). This is an essential
anti-apoptotic and proliferativemechanism in tumor cells, directly acti-
vated by the IL-6 receptor (IL-6R) (Loffler et al., 2007; Wang et al.,
2013). In addition, IL-6 stimulation of the PI3K/Akt signal transduction
pathway leads to the expression of the cell survival factor cyclin D1
(Wegiel et al., 2008), as well as modulating other intracellular proteins
which support tumor growth (Fig. 1). IL-6 also inhibits dendritic im-
mune cell differentiation and promotes immune tolerance, reducing T
cell immune-surveillance and cytotoxicity (Menetrier-Caux et al.,
1998).

Finally, IL-6 provides intriguing links between insulin and the occur-
rence of inflammation, since insulin is able to promote IL-6 release into
the circulation and induces TNF- α gene expression within adipose tis-
sue (Krogh-Madsen et al., 2004).

2.6.3. IRE1
It is likely that with the recognition of inflammation as a significant

precursor of cancerous cell behavior, more factors will be identified
which encourage or initiate a local inflammatory response, since they
will then become suspects for oncogenesis. A recently described exam-
ple is the Inositol Requiring Enzyme-1 (IRE-1), an endoplasmic reticular
enzyme which responds to imposed cellular stress and high fat content
feeding by contributing to activation of the Unfolded Protein Response,
a co-ordinated reaction to stresswhich can lead tomacromolecular deg-
radation and apoptosis. It has been shown that in adipose tissue-resi-
dent macrophages IRE1α activation induces a shift in the biomolecular
profile of those cells towards a more highly pro-inflammatory (M1)
state of polarization (Bujisic and Martinon, 2017; Shan et al., 2017). If
this activation is maintained chronically, it could well contribute to
the initiation of tumor formation.

2.6.4. Th17 T Cells
The importance of the relative numbers and activity of Th1 and Th2

helper T cells in determining overall inflammatory status is well
established, but the discovery of Th17 cells as a subtype of CD4+ effec-
tor T cells related to Th1 cells has introduced a new dimension to the
field. Th17 cells contribute to the development of inflammation and hy-
perglycemia, potentiated by B cell activity in obesity-related diabetes
(Ip et al., 2016). Using assays on monocytes from subjects with type-2
diabetes mellitus, it has been found that Th17 cells provide themost ro-
bust characterisation of the disorder, especially when associated with B
cells, while levels of TNF-αwere increased in a range of T cell subsets in
addition to Th17 cells. Thus, Th17 cells may represent a crucial link be-
tween inflammatory status, type-2 diabetes, elevated BMI values, and
carcinogenesis (De Simone et al., 2013; Alizadeh et al., 2013). As noted
below, the ability of kynurenine catabolites to suppress activation of
pro-inflammatory T cells is also likely tomake a significant contribution
to regulating immune function and cancer risk.

2.6.5. Inflammasomes
The prominent link between inflammation and obesity has been fur-

ther emphasized byfinding that theNLRP3 inflammasomemay contrib-
ute to the pathology (Stienstra et al., 2010; Vandanmagsar et al., 2011).
The NLRP3 proteins are expressed by adipose tissue macrophages
whereas mice deficient in the inflammasome exhibit reduced numbers
of activated T cells and lower levels of inflammatory cytokines in adi-
pose tissue. Feeding a high-fat diet activates the inflammasome while
mice lacking NLRP3 are relatively resistant to the development of obe-
sity following a high fat diet, and show improved insulin efficacy and
glucose metabolic control. Inhibitors of NLRP3might, therefore, be suit-
able anti-obesity agents.
2.6. Summary: Existing Hypotheses

Overall, the majority of hypotheses proposed over the past 20–
30 years have been based around the physiological functions and path-
ological correlations of compounds intimately involved in general me-
tabolism of adipose tissue or its regulation by systemic factors and the
relevance of those compounds to cell proliferation or development
that could contribute to abnormal proliferation and migration leading
to oncogenesis. The more recently developed concepts to be described
below adopt a wider perspective in which the interface between adi-
pose metabolism, inflammation and carcinogenesis is mediated by
newly uncovered links involving biochemical pathways which open
new perspectives on the obesity/cancer relationship in a more holistic,
biologically integrated manner.

3. New Concepts

3.1. Kynurenines

The kynurenine pathway represents the dominant pathway of tryp-
tophan catabolism, accounting for the disposal of around 95% of the
tryptophan not used for protein synthesis. It is initiated by the oxidative
enzymes indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-
dioxygenase (TDO) (Chen and Guillemin, 2009; Stone and Darlington,
2002; Schwarcz and Stone, 2017) but, while TDO is primarily a constitu-
tive hepatic enzyme, IDO is induced and activated by interferon-ɣwhich
drives the pathway as part of the response to infection and immune sys-
tem stimulation (Prendergast et al., 2014).

The kynurenine pathway is also driven physiologically by eating.
Most foods contain tryptophan and excessive food intake will amplify
normal tryptophan catabolism. There is some evidence that tryptophan
might mediate feedback changes in food intake, since diets supple-
mented with tryptophan increase food intake in pigs and show a strong
trend to do so in dogs (Fragua et al., 2011). A role for this pathway in
feeding behavior is supported by the correlation between levels of
kynurenine, kynurenic acid and quinolinic acid with the BMI
(Favennec et al., 2015) as well as with increased expression of enzymes
along the pathway in adipose tissue from obese human subjects. En-
zyme expression was greatest in activated macrophages, consistent
with thefinding that pathway activation could be induced in adipocytes
by pro-inflammatory cytokines. There is strong evidence implicating
the kynurenine pathway in the ‘metabolic syndrome’ and insulin resis-
tancewhich is one of itsmajor features inmany obese individuals (Filho
et al., 2018; Oh et al., 2017; Oxenkrug et al., 2017; Rebnord et al., 2017).
There is a clear correlation between plasma levels of tryptophan and its
metabolites, leptin and BMI (Samad et al., 2017). The altered biochem-
istry appears to develop with chronic obesity since a high kynurenine:
tryptophan ratio is seen in adults but not subjects aged 18 or less
(Mangge et al., 2014). The increased tryptophan oxidation correlated
with abdominal adiposity rather than overall BMI, suggesting that it
specifically involved an aspect of fat metabolism – the basis of the met-
abolic syndrome. The inflammation-induced activation of IDO and its
metabolism of tryptophan to kynurenine has been proposed as the
major mechanism linking inflammation, depression, type-1 diabetes
and obesity (Engin and Engin, 2017; Murfitt et al., 2017; Zhong et al.,
2017), partly attributable to the effects of tryptophan metabolites on
food craving (Dalkner et al., 2017).

Intriguingly, kynurenine represents an important link with recent
studies of the Aryl Hydrocarbon Receptor (AHR) and obesity. The AHR
is known to influence food intake andmetabolism sufficiently to control
body mass in animals fed a diet similar to that of European and North
American (“Western”) populations – a concept related to the ‘cafeteria’
diets popular in earlier literature. Conversely, blocking the AHR using
specific inhibitors such as CH223191 reduced the development of
‘Western diet’-induced obesity in mice, as did deletion of IDO-1
(Moyer et al., 2016, 2017).
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Kynurenine itself is an important endogenous activator of the AHR,
which also responds to exogenous chemicals (notably the dioxin family
of toxins) and is activated by both the TGFβ induced NFkB pathway and
by Toll-Like Receptors (TLR2/4) activated by oxidized LowDensity Lipo-
protein (LDL), which also induces IDO-1. Under the influence of TGFβ,
the non-canonical activation of NFkB induces IDO-1 expression as well
as increased expression of TGFβ. The result is an increased expression
of IDO-1 maintained by positive feedback in plasmacytoid DCs
(Pallotta et al., 2014a). It has therefore been proposed that it is primarily
the kynurenine generated by the TGFβ or TLR activation of IDO-1which
activates the AHR and maintains food intake at obesogenic levels
(Moyer et al., 2016). Direct activation of the AHR by dioxins and related
xenobiotics increase adipocyte proliferation and differentiation as well
as the release of inflammatory compounds by mature adipocytes
(Arsenescu et al., 2008). This places the AHR in a powerful position to
regulate the immune system (Gutierrez-Vazquez and Quintana, 2018).
It has been suggested that xenobiotic compounds maintain ongoing ac-
tivation of the AHR tending to promote diabetes, glucose intolerance
and aspects of the metabolic syndrome (Park et al., 2013).

Paradoxically, IDO-1 expression is greatly reduced or absent in the
mouse Non-Obese Diabetic (NOD) model of autoimmune diabetes
(type-1), but artificial transfection of IDO-1 inhibited the development
of diabetes in parallel with a reduced generation of pro-inflammatory
cytokines including IL-6 and TNF-α (Pallotta et al., 2014b). This may in-
dicate that the overall relevance of the kynurenine pathway in type-1
diabetes depends on inflammatory status.

Obesity and some associated risk factors such as hypertension, may
involve the effects of kynurenines in the central control of adipose me-
tabolism via the modulation of neuronal glutamate receptors, to be
discussed next. Adipose tissue activation initiates sympathetic reflexes
Fig. 2. The kynurenine pathway is initiated by the oxidation of tryptophan via the enzymes I
activity. Several feedback circuits involving the kynurenines, regulation of the Aryl Hydro
modulator GCN2 place the pathway in a central position to integrate many aspects of metabo
at NMDA receptors contribute to the activity of feeding regulatory systems in the hypotha
determination of cell viability, such as MAPK and ERK1/2 account for the effects of kynurenine
which are modulated by glutamate receptors and which include re-
sponses to leptin, implying that glutamatergic neural control is located
downstream of leptin receptor activation (Cui et al., 2013). Glutamate
receptors, especially those sensitive to synthetic N-methyl-D-aspartate
(NMDA) may be relevant to obesity since they are present in cerebral
regions responsible for appetitive and metabolic regulation. The only
known selective endogenous agonist at NMDA receptors is quinolinic
acid (Stone and Perkins, 1981) a product of kynurenine metabolism
(Stone and Darlington, 2002; Badawy, 2017) (Fig. 2) which has been
shown to induce a range of physiological and degenerative changes
via the NMDA receptors and which has consequently been implicated
in several clinical disorders of metabolism or neuronal function includ-
ing depression, stroke (Stone et al., 2012a) Huntington's disease (Stone
et al., 2012b; Forrest et al., 2010) and cognitive disorders such as schizo-
phrenia (Stone and Darlington, 2002; Stone and Darlington, 2013;
Schwarcz and Stone, 2017). The pathway is also involved intimately in
early brain development and, as a result, interference with the pathway
during embryogenesis can affect brain structure and function (Forrest et
al., 2013a, 2013b; Khalil et al., 2014), cognitive and behavioral perfor-
mance of the postnatal offspring (Notarangelo and Pocivavsek, 2017)
as well as functions of other organ systems (Song et al., 2017). Adipose
tissue activation initiates sympathetic reflexes which are modulated by
glutamate receptors and which include responses to leptin, implying
that glutamatergic neural control is located downstreamof leptin recep-
tor activation (Cui et al., 2013) and is an important component of the
appetitive neural network. In this context, it may be relevant that the
glutamate-induced animal model of obesity has proved valuable in
explaining several aspects of over-eating and obesity and has helped
to understand the role of positive influences such as exercise (Gobatto
et al., 2002). The presence of glutamate receptors as a key factor in
DO and TDO, with downstream catabolites having toxic, antioxidant and cell-protective
carbon Receptor (AHR), T cell production and balance and activity of the cell survival
lic and feeding control. Quinolinic acid as an agonist and kynurenic acid as an antagonist
lamus. Effects on β-catenin activation and translocation as well as key enzymes in the
s on carcinogenesis.
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obesity also explains the anti-obesity activity of glutamate antagonists
such as memantine (Hermanussen and Tresguerres, 2005).

Importantly, NMDA receptors are blocked by another kynurenine
metabolite, kynurenic acid (Perkins and Stone, 1982; Stone et al.,
2013). The quinolinic acid activation of NMDAR or their blockade by
kynurenic acid could account for part of the regulatory function of
kynurenines in feeding behavior and body mass regulation.

3.2. Kynurenines and Cancer

The relevance of the kynurenine pathway is that not only do its com-
ponents affect the regulation of metabolism, feeding and body mass,
largely via the modulation of NMDA receptor activity, but they are
also implicated in aspects of carcinogenesis. Expression of the central
enzyme of the pathway - kynurenine-3-monooxygenase (KMO) is
greater in human hepatic carcinoma cells than controls (Jin et al.,
2015) and is known to influence cell proliferation and migration
(Lucarelli et al., 2017). A key factor implicating kynurenines in cancer
was the discovery that kynurenine was a major endogenous activator
of the AHR (Opitz et al., 2011a). Activation of the AHR has been linked
to several types of cancer (DiNatale et al., 2010a, 2010b) since it pro-
motes Treg development, suppressing effector T cell activity and pro-
moting tumor development and progression. The importance of this
kynurenine-AHR interaction lies partly in its positive feedback nature,
since AHR activation induces IDO expression which produces more
kynurenine and thus initiates a potentially explosive generation of
IDO and kynurenine metabolites.

The kynurenine pathway is known to be up-regulated in triple neg-
ative breast cancer (TNBC) cells. This seems to include not only IDO but
also the recently described TDO2 whose expression is dependent on
NFkB. The increased generation of kynurenine is sufficient to activate
the AHR and could contribute to cancer progression and metastasis as
noted above. Removal or inhibition of the AHR reduces metastasis, as
does the inhibition, in vivo, of TDO2 (D'Amato et al., 2015).

The scratch or wound injury assay in culture or in vivo is often used
to reflect cell migration and is associated with a significant increase in
the expression of IDO in the wounded and adjacent cells. However,
wound healing has been reported to improve in the absence of IDO or
after its inhibition by 1-methyl-D-tryptophan (1MT) (Ito et al., 2015).
Tryptophan but not kynurenine improvedwound closure, perhaps indi-
cating a role for kynurenic acid. One caveat to consider in all work
employing 1MT is that this compound also inhibits tryptophan uptake
and upregulates the expression of IDO-1, an action that would counter-
act enzyme inhibition (Opitz et al., 2011b). On the other hand it has
been shown that the transfection of ectopic IDO into fibroblasts, or
their treatmentwith kynurenine, induced less scar tissue than in normal
cells (Li et al., 2014). Part of this phenomenon may be explained by
kynurenine's ability to inducematrixmetalloprotease activity, an action
which, interestingly, is dependent on MAPK activity which has also
been linked to oncogenesis.

These considerations account for the widespread interest in the de-
velopment of IDO inhibitors to suppress Treg (and cancer cell) suppres-
sion of T effector cells consistent with data that mice develop fewer
tumors in the absence of IDO activity (Thaker et al., 2013).

Kynurenic acid levels are lower inmany cancer cells than naïve cells,
a factor possibly contributing to tumor development since kynurenic
acid inhibits cancer cell migration and proliferation albeit at high, mi-
cromolar, concentrations (Walczak et al., 2011, 2012, 2014a) probably
via inhibition of MAPK, Akt and ERK1/2 (Walczak et al., 2014b). Also,
kynurenic acid, as with kynurenine, can suppress inflammation and in-
hibit the excessive proliferation and overgrowth of regenerating tissue
which normally leads to scar formation (Elizei et al., 2015;
Poormasjedi-Meibod et al., 2014). Despite these results, kynurenic
acid is said to be a good indicator of cancerous tissue with lymphatic
metastases (Sagan et al., 2015) although it is often difficult to attribute
such correlations to having direct relevance to the cancer itself, rather
than the associated inflammation that exists with advanced, malignant
disease.

A different perspective on the kynureninepathwaywhich is relevant
to both the control of body mass and cancer progression is its ability to
regulate cells of the immune system. It is well established that
kynurenine itself can affect the production of Treg cells as noted
above, but it is also metabolized to compounds with marked anti-in-
flammatory activity. Notably, 3-HAA suppresses the mainly pro-inflam-
matory Th1 subtype of effector T cells as well as Th17 cells, (Fallarino et
al., 2002; Stephens et al., 2013; Criado et al., 2009) with little effect on
anti-inflammatory Th2 cells. The generation of tryptophan catabolites
such as these, in addition to the metabolic effects of tryptophan deple-
tion can activate General Control Non-derepressible-2 (GCN2) and af-
fect cell proliferation and migration (Eleftheriadis et al., 2015). Overall,
the kynurenine pathway is believed to promote a net anti-inflammatory
balance in the immune system which would reduce the inflammatory
driving force converting some normal or potentially cancerous cells to
an actively aggressive state.

Finally, the kynurenine pathway plays an important role in most
cells as the synthetic route for nicotinamide and NAD. Depletion of the
latter enzymic cofactor is known to suppress cell proliferation and mo-
tility by disruptingmany fundamentalmetabolic pathways (Kennedy et
al., 2016). Thus, any interference with the activity of IDO or subsequent
enzymes in the kynurenine pathway, or a loss of the individual catabo-
lites, is likely to yield similar overall negative effects on cell function.
While it is not clear whether such interference would be sufficient to
exert significant anti-cancer activity, it is likely that a combination of
kynurenine pathway disruption leading to lowered levels of NAD, to-
gether with conventional chemotherapy, may have therapeutic
advantages.

A major challenge remains in relating kynurenine pathway activity
to the initiation of cancer. Some growth factors such as TGFβ are
thought to be critical inducers of cell motility and invasion. Certainly
TGFβ is a factor initiating EMT (Brito et al., 2015) although equating
EMT with cell migration has been cast in to doubt by work indicating
a clearer relationship with cancer cell viability and chemoresistance
(Fischer et al., 2015; Zheng et al., 2015). Inhibition of IDO (using 1MT)
potentiated the induction of EMT by TGFβ, promoting cell migration.
This was associated with the recognized molecular markers of EMT
such as a loss of E-cadherin and increased expression of N-cadherin.

3.3. Serine Proteases

Serine proteases have been reported to affect a myriad of cellular
functions including proliferation and migration, some of which are rel-
evant to inflammation and oncogenesis. Further, serine protease inhib-
itors can reduce inflammation and the incidence of some tumors (Roy et
al., 2010). The molecular mechanisms of these effects, however, have
remained unclear but the recent discovery that major, common, mam-
malian serine proteases such as chymotrypsin and the related bacterial
chymotryptic enzyme subtilisin, are able to deplete cells of tumor sup-
pressor proteins (Forrest et al., 2016) has triggered renewed interest
in these enzymes and their molecular targets.

The tumor suppressor proteins that were studied included Deleted
in Colorectal Cancer (DCC), neogenin (a related protein with 49% struc-
tural homologywith DCC) and uncoordinated-5 (unc5), all of which are
receptors for the extracellular protein family of netrins (Sun et al.,
2011a). In the absence of netrins, DCC andneogenin inhibit proliferation
and induce apoptosis, resulting in their classification as ‘tumor suppres-
sors’. This effect is restrained by netrin binding so that cellular survival
and proliferation is dependent on the presence of the netrin-receptor
interaction, giving rise to the alternative description of DCC, neogenin
and unc5 as ‘dependence receptors’ (Mehlen and Guenebeaud, 2010).
Conversely, in the absence of DCC and neogenin, netrin itself drives pro-
liferation which is normally restrained by the dependence proteins. The
consequence of the interplay between these proteins is that loss or
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removal of DCC or neogeninwill allow increased cell proliferation ormi-
gration which will be further enhanced by the unopposed activity of
netrin. Hence, there will be a greater probability that the cells affected
by the loss of DCC and neogenin will progress to a cancerous state
(Fig. 3).

Among themajormammalian serine proteases are the pancreatic di-
gestive enzymes such as trypsin and chymotrypsin. Other serine prote-
ases are produced by the liver (pro-protein convertases), leucocytes
(neutrophil elastase) and prostate glands (prostate specific antigen).
Chymotrypsin is of special interest since it is extraordinarily stable,
being resistant to most other proteases. The concentration of chymo-
trypsin remains almost unchanged in transit from the pancreas to the
feces. Indeed, chymotrypsin is largely responsible for the destruction
of another major serine protease, trypsin, whose levels decline progres-
sively between the upper and lower intestines while chymotrypsin is
unchanged. In addition, chymotrypsin is absorbed from the intestine
into the circulation of humans (Miller et al., 1960; Kabacoff et al.,
1963) and laboratory animals (Megel et al., 1964) even after oral ad-
ministration (Avakian, 1964), giving access of the enzyme to all
vascularized tissues. An increased food intake leads to a higher secretion
of chymotrypsin (Piccione et al., 2004) to handle the increased digestive
demand and which persists into the feces. Over-eating will increase
levels of chymotrypsin in the circulation secondary to intestinal absorp-
tion. Piccione et al. (2004) reported a correlation in dogs between the
concentration of chymotrypsin in the intestinal chyme or feces and
bodyweight. Chymotrypsin levels therefore correlate with bodyweight
(Piccione et al., 2004; Hashimoto and Nara, 2003) whereas elevated
serum levels of anti-chymotrypsin are inversely related to body weight
(Friis et al., 2002). Conversely, elevated serum levels of anti-chymotryp-
sin are inversely related to body weight (Friis et al., 2002), consistent
with the view that it is increased chymotryptic activity - whether
caused by raised chymotrypsin or lowered anti-chymotrypsin - which
may be responsible for increased cancer susceptibility. The concentra-
tion of chymotrypsin in the human intestine is between 1 and 10 μM,
the same concentration range that has been shown to remove the
tumor suppressors DCC and neogenin from cellular membranes
(Forrest et al., 2016). The concentration of trypsin, in contrast, falls sub-
stantially during its intestinal transit.

Over-eating will therefore result in supra-normal levels of chymo-
trypsin in the intestinal contents (Hashimoto and Nara, 2003). In addi-
tion, it was established years ago that chymotrypsin is absorbed from
the intestine into the circulation of humans (Miller et al., 1960) and
Fig. 3. A. The transmembrane Dependence Receptors Deleted in Colorectal Cancer (DCC), neog
activity of these receptorswhich induces apoptosis, and the inhibitory effect of netrin bindingw
Serine proteases such as chymotrypsin in the digestive tract and systemic circulation, or exogen
allowing netrin to drive proliferation unopposed, potentially leading to carcinogenesis.
laboratory animals (Kabacoff et al., 1963; Megel et al., 1964) even
after oral administration (Avakian, 1964). Plasma levels will then be in-
creased, giving access of the enzyme to all vascularised tissues. While
not identifying the proteins directly, other groups have reported in-
creased circulating chymotryptic activity after increasing intestinal
levels (Colman, 1965; Sherry and Fletcher, 1960). In relation to the com-
position of diet discussed above it is highly relevant that trypsin levels
were found to be four times greater in the feces of dogs given a meat-
based diet compared with a cereal diet (Merritt et al., 1979).

It is interesting to note that chymotrypsin is able tometabolise insu-
lin (Kono, 1969) raising the possibility that increased levels of chymo-
trypsin in the plasma and tissues of obese individuals could be at least
partly responsible for both the type-2 diabetes and the cancer suscepti-
bility resulting from over-eating.

Finally, it remains unclear whether there is any functional relation-
ship between the chymotryptic activity of the 20S proteasomal subunits
- which are targeted by several anti-cancer drugs (Neilsen et al., 2013) -
and the chymotryptic activity of subtilisin and chymotrypsin. While
proteasomal inhibitors often have little effect against chymotrypsin ac-
tivity, there is certainly a degree of structural overlap since all these en-
zymes are inhibited by chymostatin.

3.3.1. Subtilisin
Similar considerations apply to the bacterial chymotryptic serine

protease, subtilisin, which is able to deplete DCC and neogenin at
nanomolar concentrations in cultured cells, at least an order of magni-
tude more potent than chymotrypsin (Forrest et al., 2016).

Indeed, just as chymotrypsin concentrations in the blood, deter-
mined by its intestinal secretion in proportion to protein intake, may
contribute substantially to the obesity-cancer association, the efficacy
of subtilisin may represent a major link between environmental factors
and cancer. Subtilisin is abundant in the environment and several spe-
cies of Bacillus which secrete subtilisin, including B. subtilis, colonise
the intestine and, together with their spores, can survive gastric and in-
testinal digestion (Hoa et al., 2000, 2001; Hong et al., 2008). Subtilisin is
also among the proteases used in the preparation of animal feedstuffs
and probiotics administered as alternatives to antibiotics (Hoa et al.,
2000) to increase meat production in farm animals (Alexopoulos et al.,
2004; Kowalski et al., 2009; Sun et al., 2010, 2011b; Ripamonti and
Stella, 2009; Hong et al., 2008; Kampf, 2012; Te Giffel et al., 1996)
from where the enzyme might enter the human food chain. Numerous
studies have revealed the presence of Bacillus species in popular food
enin and unc5 are receptors for the group of netrin ligands. The balance between intrinsic
hich also directly promotes cell proliferation,maintains cells in a state of optimumviability.
ous chymotryptic enzymes such as subtilisin deplete cells of their Dependence Receptors,
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items (Cachaldora et al., 2014; Matarante et al., 2004; Te Giffel et al.,
1996) and subtilisin-like enzymes are secreted bymany other microbes
(Bonifait et al., 2011).

This risk is increased by the use of subtilisin in food processing, espe-
cially of red meats in which it tenderises the meat and increases its fla-
vor aswell as facilitating handling during processing (Piazza andGarcia,
2014; see Stone and Darlington, 2017). These various commercial used
may lead to subtilisin entering the food chain, with tissue levels becom-
ing higher in individuals consuming a high proportion of red meats or
processed food. This would be consistent with epidemiological data
suggesting that dietary processed red meat is more carcinogenic than
fresh produce. A significantly higher risk of several forms of human can-
cer is associated with regular meat consumption (McCullough et al.,
2013; Rohrmann et al., 2013; Key et al., 2002, 2014; Song et al., 2014;
Wie et al., 2014; Xu et al., 2014; Xue et al., 2014; Mourouti et al.,
2015). Similarly carcinogenesis is increased by beef consumption in ex-
perimental animals (Alexander et al., 2011; Aune et al., 2013; Chan et
al., 2011; Larsson et al., 2006; Larsson and Wolk, 2006; Norat et al.,
2002; Mrkonjic et al., 2009).

Subtilisin is also one of the biological additives included in some do-
mestic cleaning products such as biological washing powders and fluids,
with which skin contact and inhalation should be carefully avoided
(Gupta et al., 2002;Maurer, 2004) . In addition to the innate risks of over-
eating and obesity described above, it is probable that increased food in-
take will increase the total burden of B. subtilis and of subtilisin in the
gastrointestinal tract, an effect thatmight bemitigated by increasing tran-
sit time. The possibility also requires consideration that increased levels of
these serineproteases fromdifferent sources,mammalian, environmental
and dietary, may result in synergistic effects, further increasing cancer
risk. Fromall these sources, subtilisin and relatedproteasesmay represent
a significant environmental threat of carcinogenesis.

Conversely, bacteria which generate acidic environments, such as
the lactobacilli in someprobiotic preparations, should counteract the ef-
fects of alkaline proteases such as subtilisin, reducing the latter's ability
to deplete cells of their dependence receptors. Such an interaction
might contribute to their ability to reduce the incidence of bladder, co-
lorectal and other cancers in humans (Zhong et al., 2014; Davis and
Milner, 2009).

3.3.2. Overall Dietary Consideration
Plant-based foodstuffs are generally considered to be protective

against cancer (Orlich et al., 2015). Even an early review of 156 studies
concluded that cancer risk in people consuming low amounts of fruits
and vegetables was approximately double that of individuals with a
high intake of these products, even after controlling for potentially con-
founding factors (Block et al., 1992) and the more recent work referred
to above has repeated confirmed these findings. The presence in some
dietary plant species of the family of Bowman-Birk inhibitors (BBI) pro-
vide scientifically credible reasons why diets rich in fruits and vegeta-
bles may protect against the development of many cancers.

Bowman-Birk inhibitors are relatively small proteins, highly stable
within the intestine and generally resistant to heating and cooking,
which are known to be absorbed from the intestine into the blood.
Many BBIs are efficient inhibitors of cancer cell growth, giving them
both preventative and potentially curative properties even against can-
cer resistant to conventional anti-cancer medication (Wan et al., 1998,
2002; Kennedy, 1998; Aggarwal and Shishodia, 2006). Their inhibition
of serine protease-induced down-regulation of tumor suppressors
(Forrest et al., 2016; Stone andDarlington, 2017) could be a key element
in this anti-cancer activity.

4. Discussion

Despite the growing awareness of potential mechanisms which
could contribute to a causal association between obesity and cancer,
their relative importance and details of their molecular basis remain
unclear. Lifestyle factors such as poor diet and low physical activity
might facilitate the development of obesity and cancer independently
(Norat et al., 2005; Wang and Beydoun, 2009). Simple physical factors
such as intestinal transit time, which is known to be relevant to onco-
genesis and is reduced with poor diets or low exercise levels, are also
likely to be relevant. It is also clear that there are methodological prob-
lems associated with the study of these concepts in humans, including
doubts about the validity of some forms of measurement. Obesity-asso-
ciated cancer risk is commonly determined using the measurement of
BMI but previous studies imply that more suitable measurements in-
clude waist circumference and visceral adiposity (Moore et al., 2004;
Pischon et al., 2006). Studies limited tomeasurements of BMImay be in-
appropriate, incomplete or even misleading.

Molecular considerations underlying the link between obesity and
cancer such as an abnormal insulin/IGF-1 axis, dysregulated hormonal
signaling, fatty acid metabolism and chronic inflammation, or a combi-
nation of these, could be among the factors involved in carcinogenesis.
In addition,we have summarised new information that serine proteases
such as chymotrypsin in intestinal secretions and subtilisin in the diet
and environment can deplete cells of key tumor suppressors, findings
which lead to novel and exciting potential avenues for exploration.
These include simple public health measures such as (a) eliminating
subtilisin from food processing procedures (b) removing B. subtilis and
other serine protease generators from farm animal probiotics and,
thus, from the human food chain (c) increasing the consumption of
fruit and vegetables containing Bowman-Birk and related serine prote-
ase inhibitors (d) promoting the thorough cleaning of root vegetables to
remove B. subtilis-containing soil. There are also non-dietary sources of
subtilisin, such as cleaning materials (see 37) and it may be rational to
encourage the thorough rinsing of cutlery, crockery and other items
used in food preparation and consumption and the thorough rinsing
of clothing to remove traces of commercially added subtilisin-like en-
zymes in biological detergents. Together, these actions might prevent
countless incidences of cancer easily and cost-effectively.

What remains unclear is the nature of the relationship between any
one of the mechanisms discussed above and the etiology of cancer. The
deletion of dependence receptors, for example, does increase prolifera-
tion in some cell types and does increase cell migration as expected of
an aggressive, potentially metastatic cell (see Stone and Darlington,
2017). That not all cells respond in this way and that the effects are usu-
ally small rather than dramatic has been interpreted by some to indicate
that these proteins are less important in cancer thanmight be expected.
However, it has been proposed that around six independent steps are
required to convert a normal cell into a rapidly proliferating, actively
migrating cancer cell (Hanahan and Weinberg, 2011). That would
seem to require an extremely rare combination of events. If, however,
there are errors of cellular function being induced frequently through-
out life, for example by repeated episodes of over-eating or consuming
meat and processed products, then a partial loss of DCC or neogenin
could lower the threshold for carcinogenesis to occur when one or
two of the other factors strikes (e.g. radiation exposure, low vitamin
levels, contact with an oncogenic stimulus such as smoking or air pollu-
tion). Tomasetti et al. (2017) have recently proposed a closely similar
concept in which a single necessary but avoidable cellular disturbance
could promote cancer development if it occurs on a background of a
wide range of spontaneous and essentially unavoidable factors. If that
is the case, the possible role of individual factors such as an obesity-re-
lated product, exposure to a toxin or radiation, or contact with a dietary
or environmental serine protease, as discussed here, could become crit-
ical. Preventing such avoidable concernsmight be farmore important to
cancer prevention than has been recognized.

5. Outstanding Questions

Most of the current ideas have little in common and important ques-
tions remain to be answered. Does chronic manipulation of carbohydrate
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or lipid metabolism, by dietary or genetic means, affect the incidence of
cancer in experimental animals, or can a clearcut answer be obtained by
a comparison of human populations in which these factors are already
established as a result of local climatic (and therefore agricultural) condi-
tions, habitual consumption, spiritual preferences or other environmental
or lifestyle drivers? Is there robust evidence for genetic abnormalities as-
sociatedwith the production, destruction or receptor-mediated actions of
compounds such as adipokines, kynurenines, serine proteases or depen-
dence receptors? Also, given the increasing recognition of the prominent
role of themicrobiome in health anddisease, towhat extent do themicro-
biota produce, catabolise, transport or secrete compounds which include,
or influence, the endogenous metabolites? And does the answer to that
question have implications for a dietary-modulated dysbiosis with the
potential for therapeutic intervention by microbial manipulation (antibi-
otics, biochemical interference, probiotics, etc.) (Li et al., 2009)?

Does pharmacological or genetic manipulation of the kynurenine
pathway alter the susceptibility to carcinogenesis? Are differentmanip-
ulations based on the hypotheses discussed related to specific forms of
cancer or their stage and rate of progression?

One important objective should be to differentiate between factors
which independently promote obesity or cancer, and those whose pri-
mary effect is obesogenic leading to secondary carcinogenesis. Making
that differentiationwould greatly assist in the clarification of the under-
lying mechanisms. Of the more recent hypotheses, the kynurenine hy-
pothesis is more likely to fall into the former category, producing a
degree of obesity and oncogenesis independently, whereas the serine
protease and dependence receptor concept is more likely to reflect the
changes in enzyme activity accompanying obesity and leading to the
initiation of cancer local and systemic cancers as a result.

6. Search Strategy and Selection

The World of Knowledge and PubMed databases were used for
searching. Initial searcheswere based on general terms intended to pro-
vide awide-ranging overviewof the subject. Alsoword stemswere used
to capture related items (obes*, overeating, BMI) and (cancer, carci-
noma*, tumor*). Selection at this stage eliminated purely data-gather-
ing, statistical and epidemiological studies which contributed little to
the generation of conceptual explanations or which did not materially
affect our assessment of the acceptance or rejection of potential hypoth-
eses. Titleswere trawled for publicationswith relevance to awide range
of potential molecular mechanisms and key words identified from this
process (such as adiponectin, IGF, kynurenine, serine protease, DCC
etc.) were then used for further rounds of more focussed searching in-
cluding abstracts and then full papers. This left a range of studies with
relatively clear relevance to major hypotheses and for each of those hy-
potheses a further search was focused on two or three key-words cen-
tral to the hypothesis (adiponectin, IRE1, diabet*, etc., combined with
kynuren*, quinolinic, chymotryp*, DCC, neogenin, netrin etc.) and with
the general terms used initially. The final selection of references to be
citedwas based on the amount of information contained, the originality
of the findings (as opposed to their confirmation or extension), or their
direct relevance to the linkbetween obesity and cancer. Since thenature
of much of this review is to draw together a range of data which have
not been considered related in the past, including some very fundamen-
tal aspects of physiology of the serine proteases, it has been necessary to
cite some earlier papers.We consider it important to acknowledge such
fundamental reports whose potentially critical importance to disease is
only now being recognized.
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